Abstract

Accumulating evidence indicates an important role for inflammation in cardiac hypertrophy and failure. Peroxisome proliferator-activated receptors (PPARs) have been reported to attenuate inflammatory signaling pathways and, as such, may interfere with cardiac remodeling. Accordingly, the objectives of the present study were to explore the relationship between cardiomyocyte hypertrophy and inflammation and to investigate whether PPARalpha and PPARdelta are able to inhibit NF-kappaB activation and, consequently, the hypertrophic growth response of neonatal rat cardiomyocytes (NCM). mRNA levels of markers of both hypertrophy and inflammation were increased following treatment with the pro-hypertrophic factor phenylephrine (PE) or the chemokine TNF-alpha. Induction of inflammatory genes was found to be fast (within 2 h after stimulation) and transient, while induction of hypertrophic marker genes was more gradual (peaking at 24-48 h). Inflammatory and hypertrophic pathways appeared to converge on NF-kappaB as both PE and TNF-alpha increased NF-kappaB binding activity as measured by electrophoretic mobility shift assay. Following transient transfection, the p65-induced transcriptional activation of a NF-kappaB reporter construct was significantly blunted after co-transfection of PPARalpha or PPARdelta in the presence of their respective ligands. Finally, adenoviral overexpression of PPARalpha and PPARdelta markedly attenuated cell enlargement and the expression of hypertrophic marker genes in PE-stimulated NCM. The collective findings reveal a close relationship between hypertrophic and inflammatory signaling pathways in the cardiomyocyte. It was shown that both PPARalpha and PPARdelta are able to mitigate cardiomyocyte hypertrophy in vitro by inhibiting NF-kappaB activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.