Abstract

The anterior cingulate cortex (ACC) has been extensively cited as a key area for processing pain affect. While local field potential (LFP) studies in other fields have yielded a great deal of information about neural oscillations, there is a poverty in the pain literature about the neural LFP profile related to pain, particularly in freely moving animals. In this study, we revealed the LFP profile in the ACC in freely moving rats during carrageenan inflammation. Mechanical allodynia was recorded before and after unilateral injection of carrageenan/saline in the left hindpaw. LFP activity in the ACC was recorded at baseline, after injection, and after injection with mechanical stimulation to the paw using a von Frey filament. This study uniquely reveals that carrageenan injection significantly recruited ACC LFP activity in delta, theta, and alpha bands (0–13Hz). Application of von Frey mechanical stimulation to the carrageenan-injected paw resulted in a significant increase in delta, theta, and alpha bands over and above what was recruited by carrageenan alone and further expanded the LFP range to additionally include beta activity (13–30Hz). Taken together, these data reveal significant changes in the lowest-frequency activities in the LFP range during painful inflammation, which merit attention. LFP is a powerful window to reveal wide-range, integrated synaptic processing by low-frequency cellular events during behavior. Information about LFP during pain broadens the scope of our understanding of pain mechanisms, our greatest resource for designing management approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.