Abstract
Somatic mutations in hematopoietic stem/progenitor cells (HSPCs) can lead to clonal hematopoiesis of indeterminate potential (CHIP), potentially progressing to myelodysplastic syndromes (MDS). Here, we investigated how CHIP and MDS remodel the human bone marrow (BM) niche relative to healthy elderly donors, using single cell and anatomical analyses in a large BM cohort. We found distinct inflammatory remodeling of the BM in CHIP and MDS. Furthermore, the stromal compartment progressively lost its HSPC-supportive adipogenic CXCL12-abundant reticular cells while an inflammatory mesenchymal stroma cell (iMSCs) population emerged in CHIP, which expanded in MDS. iMSCs exhibited distinct functional signatures in CHIP and MDS, retaining residual HSPC-support and angiogenic activity in MDS, corresponding with an increase in microvasculature in the MDS niche. Additionally, an IFN-responsive T cell population was linked to fueling inflammation in the stroma. Overall, these findings open new avenues for early intervention in hematological malignancies.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.