Abstract

BackgroundIntracranial hypertension (ICH) is a common final pathway of most neurosurgical pathologies and leads to poor prognosis if not detected and treated properly. Inflammatory markers have been assessed in clinical scenarios of neurological injuries, in which systemic and brain tissue aggressions may introduce bias. There is a lack of studies under controlled settings to isolate the ICH effect on inflammation. This study aims to evaluate the effects of ICH on the serum concentration of cytokines as biomarkers of neuroinflammation in an experimental model which isolates ICH from potential confounding variables.MethodsAn established model of ICH using an intracerebral pediatric bladder catheter and a multisensor intraparenchymal catheter was used in adult pigs (Sus domesticus). The animals were randomly allocated to 2 groups based on the catheter balloon volume used to simulate the ICP increase (4 ml or 7 ml). Cytokines were measured in 4 timepoints during the experiment: (1) 15 min before balloon insufflation; (2) 5 min after insufflation; (3) 125 min after insufflation; (4) 60 min after deflation. The following cytokines were measured IL-1α; IL-1β; IL–1ra; IL-2; IL-4; IL-6; IL-8; IL-10; IL-12; IL-18; TNFα. Generalized estimating equations were modeled to compare the ICP and cytokines values between the groups along the experiment. The study sample size was powered to detect interactions between the groups and the study moments with an effect size (f) of at least 0.3. The ARRIVE checklist was followed.ResultsA total of 20 animals were studied (10 in each group, 4 ml or 7 ml balloon volume insufflation). The animal model was successful in increasing the ICP along the moments of the experiment (p < 0,001) and in creating an ICP gradient between the groups (p = 0,004). The interaction term (moment × group) was also significant (p < 0,001). There was a significant association between ICP elevation and most cytokines variation. The cytokines IL-1α, IL-1β, IL1-ra, IL-6, IL-12, and IL-18 increased, whereas IL-2, IL-4, and TNF-α decreased. IL-10 did not vary significantly in response to the ICP elevation.ConclusionThe serum concentration of cytokines varied in response to intracranial hypertension. The study demonstrated the specific changes in each cytokine after intracranial hypertension and provides key information to guide neuroinflammation clinical research. The proposed experiment was successful as an animal model to the study of neuroinflammation biomarkers

Highlights

  • Intracranial hypertension (ICH) is the common final pathway of most neurosurgical pathologies

  • Our objective is to evaluate the effect of intracranial hypertension on the serum concentration of cytokines as biomarkers of neuroinflammation in an experimental model

  • Intracranial hypertension simulation The intracranial pressure (ICP) increased after the balloon insufflation, underwent relative stabilization until the pre-deflation moment, and fell after the deflation

Read more

Summary

Introduction

Intracranial hypertension (ICH) is the common final pathway of most neurosurgical pathologies. ICH leads to a sequence of events which affect brain tissue such as ischemia, edema, and necrosis. These events release biomarkers which can be measured in samples of brain tissue, CSF, and even peripheral blood due to concomitant disruption of the blood–brain barrier (BBB). Intracranial hypertension (ICH) is a common final pathway of most neurosurgical pathologies and leads to poor prognosis if not detected and treated properly. This study aims to evaluate the effects of ICH on the serum concentration of cytokines as biomarkers of neuroinflammation in an experimental model which isolates ICH from potential confounding variables

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call