Abstract

The immunological responses are a key pathological factor in Alzheimer’s disease (AD). We hypothesized that microglial polarization alters microglia-astrocyte immune interactions in AD. M1 and M2 microglia were isolated from primary rat microglia and were confirmed to secrete pro-inflammatory and anti-inflammatory factors, respectively. Primary rat astrocytes were co-cultured with M1 or M2 microglial medium. M1 microglial medium increased astrocyte production of pro-inflammatory factors (interleukin [IL]-1β, tumor necrosis factor α and IL-6), while M2 microglial medium enhanced astrocyte production of anti-inflammatory factors (IL-4 and IL-10). To analyze the crosstalk between microglia and astrocytes after microglial polarization specifically in AD, we co-cultured astrocytes with medium from microglia treated with amyloid-β (Aβ) alone or in combination with other inflammatory substances. Aβ alone and Aβ combined with lipopolysaccharide/interferon-γ induced pro-inflammatory activity in M1 microglia and astrocytes, whereas IL-4/IL-13 inhibited Aβ-induced pro-inflammatory activity. Nuclear factor κB p65 was upregulated in M1 microglia and pro-inflammatory astrocytes, while Stat6 was upregulated in M2 microglia and anti-inflammatory astrocytes. These results provide direct evidence that microglial polarization governs communication between microglia and astrocytes, and that AD debris alters this crosstalk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call