Abstract

Plant defense stimulators (PDSs) rely on the activation of plant innate immunity in order to protect crops against various pests. These molecules are thought to be a safer alternative to classical plant protection products. Given that innate immune systems share common features in plants and vertebrates, PDS can potentially cross-react with innate immunity of non-target organisms. To test this hypothesis, we studied effects of the commercial PDS Stifenia (FEN560), which is composed of crushed fenugreek seeds. We tested various concentrations of Stifenia (0.03–1 mg mL−1) on human peripheral blood mononuclear cells and checked, 20 h later, cell metabolic activity (MA) using XTT assay, cell death by flow cytometry analysis, and IL-1β inflammatory cytokine released in the culture medium using ELISA. Stifenia induced a general decrease of the cell MA, which was concomitant with a dose-dependent release of IL-1β. Our results highlight the activation of human immune cells. The inflammatory effect of Stifenia was partially inhibited by pan-caspase inhibitor. Accordingly, Stifenia induced the release of p20 caspase-1 fragment into the culture medium suggesting the involvement of the NLRP3 inflammasome. Furthermore, we observed that Stifenia can induce cell death. We also tested the effect of Stifenia on Zebrafish larvae. After 24 h of exposure, Stifenia induced a dose-dependent IL-1β and TNFα gene expression. The human-cell-based approach developed in this work revealed a high sensitivity concerning inflammatory properties of a plant protection product. These tests could be routinely used to screen the potential adverse effects of this type of compounds. Finally, our results suggest a potential danger of using extensively certain PDS for crop protection.

Highlights

  • In the context of pesticides reduction, alternative strategies to protect crops have emerged, including use of transgenic crops, resistant hybrids, or integrated pest management methods

  • Stifenia (FEN560), which is exclusively composed of grounded fenugreek seeds (Trigonella foenum-graecum) is a Plant defense stimulators (PDSs) authorized by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES) to fight powdery mildew of grape vine (Erysiphe necator) and powdery mildew of melon (Podosphaera fuliginea and Golovinomyces cichoracearum) (ANSES agreement no. 2012-1685 and 2013-0227)

  • Stifenia is neither fully soluble in water nor in other classical solvents such as 100% DMSO, acetone 60% in water (v/v), ethanol 100%, and Roswell Park Memorial Institute medium (RPMI) medium, because it is composed of crushed fenugreek seeds

Read more

Summary

Introduction

In the context of pesticides reduction, alternative strategies to protect crops have emerged, including use of transgenic crops, resistant hybrids, or integrated pest management methods. Plant Protection Product and Inflammation or a danger state, resulting in reduced levels of plant infection. They comprise a range of purified or mixture-based natural or synthetic compounds that have been shown to protect plants efficiently [1, 2]. To use a new molecule for crop protection in France, an authorization is needed according to the European Union (EC No 1107/2009) and French regulations. Stifenia (FEN560), which is exclusively composed of grounded fenugreek seeds (Trigonella foenum-graecum) is a PDS authorized by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES) to fight powdery mildew of grape vine (Erysiphe necator) and powdery mildew of melon (Podosphaera fuliginea and Golovinomyces cichoracearum) Especially its seeds and its leaves, has been used for centuries in India and North Africa as food or in traditional medicine [4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.