Abstract

Locally derived growth factors and cytokines in bone play a crucial role in the regulation of bone remodeling, i.e., bone formation and bone resorption processes. We studied the effect of interleukin (IL)-1alpha, tumor necrosis factor (TNF)-alpha, and Escherichia coli lipopolysaccharide (LPS) on the hormone-activated Ca2+ message system in the osteoblastic cell line UMR-106 and in osteoblastic cultures derived from neonatal rat calvariae. In both cell preparations, IL-1alpha, TNF-alpha, and LPS did not alter basal intracellular Ca2+ concentration ([Ca2+]i) but attenuated Ca2+ transients evoked by parathyroid hormone (PTH) and PGE2 in a dose (1-100 ng/ml)- and time (8-24 h)-dependent fashion. The cytokines modulated hormonally induced Ca2+ influx (estimated by using Mn2+ as a surrogate for Ca2+) as well as Ca2+ mobilization from intracellular stores. The latter was linked to suppressed production of hormonally induced inositol 1,4,5-trisphosphate. The effect of cytokines on [Ca2+]i was abolished by the tyrosine kinase inhibitor herbimycin A (50 ng/ml). The cytokine's effect was, however, independent of nitric oxide (NO) production, since NO donors (sodium nitroprusside) as well as permeable cGMP analogs augment, rather than attenuate, hormonally induced Ca2+ transients in osteoblasts. Given the stimulatory role of cytokines on NO production in osteoblasts, the disparate effects of cytokines and NO on the Ca2+ signaling pathway may serve an autocrine/paracrine mechanism for modulating the effect of calciotropic hormones on bone metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.