Abstract
BackgroundTraumatic knee injuries in humans trigger an immediate increase in synovial fluid levels of inflammatory cytokines that accompany impact damage to joint tissues. We developed a human in vitro cartilage-bone-synovium (CBS) coculture model to study the role of mechanical injury and inflammation in the initiation of post-traumatic osteoarthritis (PTOA)-like disease.MethodsOsteochondral plugs (cartilage-bone, CB) along with joint capsule synovium explants (S) were harvested from 25 cadaveric distal femurs from 16 human donors (Collin’s grade 0–2, 23–83years). Two-week monocultures (cartilage (C), bone (B), synovium (S)) and cocultures (CB, CBS) were established. A PTOA-like disease group was initiated via coculture of synovium explants with mechanically impacted osteochondral plugs (CBS+INJ, peak stress 5MPa) with non-impacted CB as controls. Disease-like progression was assessed through analyses of changes in cell viability, inflammatory cytokines released to media (10-plex ELISA), tissue matrix degradation, and metabolomics profile.ResultsImmediate increases in concentrations of a panel of inflammatory cytokines occurred in CBS+INJ and CBS cocultures and cultures with S alone (IL-1, IL-6, IL-8, and TNF-α among others). CBS+INJ and CBS also showed increased chondrocyte death compared to uninjured CB. The release of sulfated glycosaminoglycans (sGAG) and associated ARGS-aggrecan neoepitope fragments to the medium was significantly increased in CBS and CBS+INJ groups. Distinct metabolomics profiles were observed for C, B, and S monocultures, and metabolites related to inflammatory response in CBS versus CB (e.g., kynurenine, 1-methylnicotinamide, and hypoxanthine) were identified.ConclusionCBS and CBS+INJ models showed distinct cellular, inflammatory, and matrix-related alterations relevant to PTOA-like initiation/progression. The use of human knee tissues from donors that had no prior history of OA disease suggests the relevance of this model in highlighting the role of injury and inflammation in earliest stages of PTOA progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.