Abstract

Lymph node metastases are commonly observed in diverse malignancies where they promote cancer progression and poor outcomes, although the molecular basis is incompletely understood. Thyroid cancer is the most prevalent endocrine neoplasm characterized by high frequency of lymph node metastases. Here, we uncover an inflammatory cytokines-controlled epigenetic program during thyroid cancer progression. LNCPTCTS acts as a novel tumor suppressive lncRNA with remarkably decreased expression in thyroid cancer specimens, especially in metastatic lymph nodes. Inflammatory cytokines TNFα or CXCL10, which are released from tumor microenvironment (TME), impair binding capabilities of the transcription factor (TF) EGR1 to the LNCPTCTS promoter and reduce the lncRNA expression in cells. Notably, LNCPTCTS binds to eEF1A2 protein and facilitates the interaction between eEF1A2 and Snail, which promotes Snail nucleus export via the RanGTP-Exp5-aa-tRNA-eEF1A2 complex. Loss of LNCPTCTS in tumors leads to accumulation of Snail in the nucleus, suppressed transcription of E-cadherin and PEBP1, reduced E-cadherin and PEBP1 protein levels, and activated epithelial-mesenchymal transition and MAPK signaling. Our results reveal what we believe to be a novel paradigm between TME and epigenetic reprogram in cancer cells which drives lymph node metastases, therefore illuminating the suitability of LNCPTCTS as a targetable vulnerability in thyroid cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call