Abstract

Tumor Necrosis Factor alpha (TNF-α) has been shown to be released by tumor cells in response to docetaxel, and lipopolysaccharides (LPS), the latter through activation of toll-like receptor 4 (TLR4). However, it is unclear whether the former involves TLR4 receptor activation through direct binding of the drug to TLR4 at the cell surface. The current study was intended to better understand drug-induced TNF-α production in tumor cells, whether from short-term drug exposure or in cells selected for drug resistance. ELISAs were employed to measure cytokine release from breast and ovarian tumor cells in response to several structurally distinct chemotherapy agents and/or TLR4 agonists or antagonists. Drug uptake and drug sensitivity studies were also performed. We observed that several drugs induced TNF-αrelease from multiple tumor cell lines. Docetaxel-induced cytokine production was distinct from that of LPS in both MyD88-positive (MCF-7) and MyD88-deficient (A2780) cells. The acquisition of docetaxel resistance was accompanied by increased constitutive production of TNF-αand CXCL1, which waned at higher levels of resistance. In docetaxel-resistant MCF-7 and A2780 cell lines, the production of TNF-α could not be significantly augmented by docetaxel without the inhibition of P-gp, a transporter protein that promotes drug efflux from tumor cells. Pretreatment of tumor cells with LPS sensitized MyD88-positive cells (but not MyD88-deficient) to docetaxel cytotoxicity in both drug-naive and drug-resistant cells. Our findings suggest that taxane-induced inflammatory cytokine production from tumor cells depends on the duration of exposure, requires cellular drug-accumulation, and is distinct from the LPS response seen in breast tumor cells. Also, stimulation of the LPS-induced pathway may be an attractive target for treatment of drug-resistant disease.

Highlights

  • Breast cancer has a mortality rate second only to lung cancer [1,2]

  • Our findings suggest that taxane-induced inflammatory cytokine production from tumor cells depends on the duration of exposure, requires cellular drug-accumulation, and is distinct from the LPS response seen in breast tumor cells

  • While the release of TNF-α from cells after chemotherapy drug exposure could be the result of cytolysis or secondary necrosis, our findings suggest that docetaxel-induced TNF-α release in this context is not a passive process associated with lysis

Read more

Summary

Introduction

Surgery is the primary treatment for most breast tumors in North America, followed by radiation and/or systemic adjuvant chemotherapy [3]. Treatment regimens for breast cancer in an adjuvant or neoadjuvant setting typically contain an anthracycline (doxorubicin or epirubicin) and a taxane (paclitaxel or docetaxel) [7]. Treatment of ovarian cancer typically involves surgical removal of the tumor followed by adjuvant chemotherapy. Preoperative chemotherapy followed by interval debulking is used in certain cases of advanced ovarian cancer [10]. In both instances, the chemotherapy drugs used typically involve the taxanes and a platinating agent [11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call