Abstract

BackgroundParticulate matter (PM) and ozone (O3) are two major ambient air pollutants. Epidemiological and toxicological studies have demonstrated exposure to these pollutants is associated with a variety of adverse health effects, including cardiovascular and respiratory disease, in which inflammation is believed to be a common and essential factor. Scope of reviewThis review mainly focuses on major inflammatory cell signaling pathways triggered by exposure to PM and O3. The receptors covered in this review include the EGF receptor, toll like receptor, and NOD-like receptor. Intracellular signaling protein kinases depicted in this review are phosphatidylinositol 3-kinase and mitogen-activated protein kinases. Activation of antioxidant and inflammatory transcription factors such as NrF2 and NFκB induced by PM and O3 is also discussed. Major conclusionsExposure to PM or O3 can activate cellular signaling networks including membrane receptors, intracellular kinases and phosphatases, and transcription factors that regulate inflammatory responses. While PM-induced cell signaling is associated with resultant ROS, O3-induced cell signaling implicates phosphates. Notably, the cellular signaling induced by PM and O3 exposure varies with cell type and physiochemical properties of these pollutants. General significanceCellular signaling plays a critical role in the regulation of inflammatory pathogenesis. Elucidation of cellular signaling pathways initiated by PM or O3 cannot only help to uncover the mechanisms of air pollutant toxicity but also provide clues for development of interventional measures against air pollution-induced disorders. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.