Abstract

Background/aimsAcute liver failure (ALF) due to ischemic or toxic liver injury is a clinical condition that results from massive loss of hepatocytes and may lead to hepatic encephalopathy (HE), a serious neuropsychiatric complication. Although increased expression of tumor necrosis factor-alpha (TNF-α) in liver, plasma and brain has been observed, conflicting results exist concerning its roles in drug-induced liver injury and on the progression of HE. The present study aimed to investigate the therapeutic value of etanercept, a TNF-α neutralizing molecule, on the progression of liver injury and HE in mice with ALF resulting from azoxymethane (AOM) hepatotoxicity.Methods/Principal FindingsMice were administered saline or etanercept (10 mg/kg; i.p.) 30 minutes prior to, or up to 6 h after AOM. Etanercept-treated ALF mice were sacrificed in parallel with vehicle-treated comatose ALF mice and controls. AOM induced severe hepatic necrosis, leading to HE, and etanercept administered prior or up to 3 h after AOM significantly delayed the onset of coma stages of HE. Etanercept pretreatment attenuated AOM-induced liver injury, as assessed by histological examination, plasma ammonia and transaminase levels, and by hepatic glutathione content. Peripheral inflammation was significantly reduced by etanercept as shown by decreased plasma IL-6 (4.1-fold; p<0.001) and CD40L levels (3.7-fold; p<0.001) compared to saline-treated ALF mice. Etanercept also decreased IL-6 levels in brain (1.2-fold; p<0.05), attenuated microglial activation (assessed by OX-42 immunoreactivity), and increased brain glutathione concentrations.ConclusionsThese results indicate that systemic sequestration of TNF-α attenuates both peripheral and cerebral inflammation leading to delayed progression of liver disease and HE in mice with ALF due to toxic liver injury. These results suggest that etanercept may provide a novel therapeutic approach for the management of ALF patients awaiting liver transplantation.

Highlights

  • Acute liver failure (ALF) is a rare but life-threatening consequence of an abrupt loss of hepatic function in a patient with no previous history of liver disease

  • These results indicate that systemic sequestration of tumor necrosis factor-alpha (TNF-a) attenuates both peripheral and cerebral inflammation leading to delayed progression of liver disease and hepatic encephalopathy (HE) in mice with ALF due to toxic liver injury

  • These results suggest that etanercept may provide a novel therapeutic approach for the management of ALF patients awaiting liver transplantation

Read more

Summary

Introduction

Acute liver failure (ALF) is a rare but life-threatening consequence of an abrupt loss of hepatic function in a patient with no previous history of liver disease. Mortality rates are high in patients with ALF (< 80%) and, in cases where liver regeneration is absent or insufficient to maintain life, liver transplantation remains the only curative treatment option. One-third of ALF patients are not eligible for liver transplantation and one-fourth of the patients listed die while waiting for a transplant [3]. These facts underscore the importance of clarifying the pathophysiologic mechanisms of ALF and the urgent need to find therapies capable of delaying the progression of the disease

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call