Abstract

Corneal neovascularization (CNV) badly damages the corneal transparency, resulting in visual disturbance and blindness. The frequent administration of glucocorticoid eye drops in clinical increases the possibility of side effects and reduces patient compliance. Considering CNV is often accompanied by an increase in ROS production, a ROS-responsive monomer 2-(methylthio)ethyl methacrylate was introduced into the matrix as a “gating switch”. The prepared dexamethasone contact lenses (MCLs@Dex) showed a significant H2O2-responsive release for 168 h. To avoid corneal hypoxia and neovascularization caused by long-term wearing, high‑oxygen-permeability fluorosiloxane materials were incorporated. The oxygen permeability of MCLs@Dex was 4 times that of commercially available hydrogel contact lenses and had ultra-low protein adsorption, which meets the requirements of long-term wearing. In vivo pharmacokinetic studies showed that MCLs@Dex increased the mean residence time by 19.7 times and bioavailability by 2.29 times compared with eye drops, validating the ROS response and sustained release properties. More importantly, MCLs@Dex had satisfactory effects on reducing inflammation and decreasing the related cytokines and oxidative stress levels, and demonstrated significant inhibition of neovascularization, with a suppression rate of 76.53% on the 14th day. This responsive drug delivery system provides a promising new method for the safe and effective treatment of ocular surface diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.