Abstract
Filaggrin (FLG), a skin barrier protein, is associated with higher dermal uptake of some chemicals in carriers of loss-of-function (null) mutations. This study investigates FLG mutations and systemic effects following dermal exposure to chemicals. Individuals (n = 23 FLG null, n = 31 FLG wt) were simultaneously exposed to pyrimethanil, pyrene, oxybenzone, and nickel ions for 4 h. Pre- and post-exposure, 25-hydroxyvitamin D3 (25(OH)D3, LC-MS/MS) and 92 inflammation-related proteins (proximity-extension assay) were measured. FLG null carriers exhibited significantly higher 25(OH)D3 concentrations than wt carriers, both pre- and post-exposure. Eleven proteins differed in abundance post- vs pre-exposure among FLG null carriers, and 22 proteins among wt carriers (three proteins overlapped). Twelve proteins showed median differences (post- vs pre-exposure) between FLG null and wt carriers. Overall, FLG null carriers showed an increase, while FLG wt carriers showed a decrease in inflammation-related proteins. These findings suggest FLG-dependent differences in susceptibility to systemic effects following simultaneous dermal chemical exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.