Abstract

BackgroundHyperglycemia is acknowledged as a pro-inflammatory condition and a major cause of vascular damage. Nevertheless, we have previously described that high glucose only promotes inflammation in human vascular cells previously primed with pro-inflammatory stimuli, such as the cytokine interleukin (IL)1β. Here, we aimed to identify the cellular mechanisms by which high glucose exacerbates the vascular inflammation induced by IL1β.MethodsCultured human aortic smooth muscle cells (HASMC) and isolated rat mesenteric microvessels were treated with IL1β in medium containing 5.5–22 mmol/L glucose. Glucose uptake and consumption, lactate production, GLUT1 levels, NADPH oxidase activity and inflammatory signalling (nuclear factor-κB activation and inducible nitric oxide synthase expression) were measured in HASMC, while endothelium-dependent relaxations to acetylcholine were determined in rat microvessels. Pharmacological inhibition of IL1 receptors, NADPH oxidase and glucose-6-phosphate dehydrogenase (G6PD), as well as silencing of G6PD, were also performed. Moreover, the pentose phosphate pathway (PPP) activity and the levels of reduced glutathione were determined.ResultsWe found that excess glucose uptake in HASMC cultured in 22 mM glucose only occurred following activation with IL1β. However, the simple entry of glucose was not enough to be deleterious since over-expression of the glucose transporter GLUT1 or increased glucose uptake following inhibition of mitochondrial respiration by sodium azide was not sufficient to trigger inflammatory mechanisms. In fact, besides allowing glucose entry, IL1β activated the PPP, thus permitting some of the excess glucose to be metabolized via this route. This in turn led to an over-activation NADPH oxidase, resulting in increased generation of free radicals and the subsequent downstream pro-inflammatory signalling. Moreover, in rat mesenteric microvessels high glucose incubation enhanced the endothelial dysfunction induced by IL1β by a mechanism which was abrogated by the inhibition of the PPP.ConclusionsA pro-inflammatory stimulus like IL1β transforms excess glucose into a vascular deleterious agent by causing an increase in glucose uptake and its subsequent diversion into the PPP, promoting the pro-oxidant conditions required for the exacerbation of pro-oxidant and pro-inflammatory pathways. We propose that over-activation of the PPP is a crucial mechanism for the vascular damage associated to hyperglycemia.Electronic supplementary materialThe online version of this article (doi:10.1186/s12933-016-0397-2) contains supplementary material, which is available to authorized users.

Highlights

  • Hyperglycemia is acknowledged as a pro-inflammatory condition and a major cause of vascular dam‐ age

  • We have previously shown that exposure to high concentrations of glucose does not cause inflammation in human vascular cells unless the cells are primed with an inflammatory stimulus such as interleukin (IL)1β or tumour necrosis factor (TNF)α [6, 7]

  • When cells were activated with IL1β (1–10 ng/mL), glucose consumption was enhanced in a concentration-dependent manner (Fig. 1c)

Read more

Summary

Introduction

Hyperglycemia is acknowledged as a pro-inflammatory condition and a major cause of vascular dam‐ age. We have previously shown that exposure to high concentrations of glucose does not cause inflammation in human vascular cells unless the cells are primed with an inflammatory stimulus such as interleukin (IL)1β or tumour necrosis factor (TNF)α [6, 7]. This led us to conclude that a background inflammatory condition is necessary for the elevation of extracellular glucose to become deleterious in the vasculature, which can explain why glycaemic control alone is not sufficient to avoid diabetic vascular damage. Understanding the mechanisms by which an inflammatory environment transforms high glucose into a deleterious agent can provide new therapeutic targets for preventing diabetic complications

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.