Abstract
We recently indicated that brain-derived neurotrophic factor (BDNF) enhances the excitability of small-diameter trigeminal ganglion (TRG) neurons projecting onto the trigeminal nucleus interpolaris/caudalis (Vi/Vc) transition zone via a paracrine mechanism following masetter muscle (MM) inflammation. The present study investigated whether modulation of voltage-gated potassium (K) channels by BDNF contributes to this hyperexcitability effect. To induce inflammation we injected complete Freund’s adjuvant (CFA) into the MM. The escape threshold from mechanical stimulation applied to skin above the inflamed MM was significantly lower than in naïve rats. TRG neurons innervating the site of inflammation were subsequently identified by fluorogold (FG) labeling, and microbeads (MB) were used to label neurons projecting specifically to the Vi/Vc region. BDNF significantly decreased the total, transient (IA), and sustained (IK) currents in FG-/MB-labeled small-diameter TRG neurons under voltage-clamp conditions in naïve and inflamed rats. The magnitude of inhibition of IA and IK currents by BDNF in FG-/MB-labeled TRG neurons was significantly greater in inflamed rats than in naïve rats, and BDNF inhibited IA to a significantly greater extent than IK. Furthermore, co-administration of K252a, a tyrosine kinase inhibitor, abolished the suppression of IA and IK currents by BDNF. These results suggested that the inhibitory effects of BDNF on IA and IK currents in small-diameter TRG neurons projecting onto the Vi/Vc potentiate neuronal excitability, and in turn, contribute to MM inflammatory hyperalgesia. These findings support the development of voltage-gated K+ channel openers and tyrosine kinase inhibitors as potential therapeutic agents for the treatment of trigeminal inflammatory hyperalgesia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.