Abstract
Increased apoptosis of chondrocytes and osteoblasts and prolonged survival of osteoclasts lead to early destruction of callus tissue and impair bone remodeling in fracture healing of diabetic patients. Diabetes is accompanied by an increased inflammatory state, reactive oxygen species (ROS) generation and accumulation of advanced glycation end products (AGEs), a heterogenous group of toxic metabolites that can induce inflammation. Prolonged hyperglycemia and insulin resistance correlate with increased apoptosis rate and, accordingly, the proapoptotic role of several inflammatory mediators, ROS and AGEs has been also documented. In this review we summarize the most recent reports supporting the idea that inflammatory signaling increases chondrocyte and osteoblast death and prolongs osteoclast survival, resulting in impaired bone regeneration in diabetes. Antagonising inflammatory signal pathways and solution of inflammation may deserve greater attention in the management of diabetic fracture healing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.