Abstract

Nitrosative stress plays a critical role in retinal injury in high glucose (HG) environment of eye, but the mechanisms remain poorly understood. Here we tested the hypothesis that HG induced reactive nitrogen species (RNS) production acts as a key functional mediator of antioxidant depletion, mitochondrial dysfunction, biomolecule damage, inflammation and apoptosis. Our findings illustrated that exposure of cultured RGC-5 cells to HG significantly disrupts the antioxidant defense mechanism and mitochondrial machineries by increasing the loss of mitochondrial membrane potential (ΔѰM) and elevating mitochondrial mass. Furthermore, we used biochemical tools to analyze the changes in metabolites, sulfur amino acids (SAAs) such as L-glutathione (GSH) and L-cysteine (Cys), in the presence of HG environment. These metabolic changes were followed by an increase in glycolytic flux that is phosphofructokinase-2 (PFK-2) activity. Moreover, HG exposure results in a significant disruption of protein carbonylation (PC) and lipid peroxidation (LPO), downregulation of OGG1 and increase in 8-OHdG accumulations in RGC-5 cells. In addition, our results demonstrated that HG environment coinciding with increased expression of inflammatory mediators, cell cycle deregulation, decreased in cell viability and expression of FoxOs, increased lysosomal content leading to apoptosis. Pre-treatment of selective inhibitors of RNS significantly reduced the HG-induced cell cycle deregulation and apoptosis in RGC-5 cells. Collectively, these results illustrated that accumulated RNS exacerbates the antioxidant depletion, mitochondrial dysfunction, biomolecule damage, inflammation and apoptosis induced by HG exposure in RGC-5 cells. Treatment of pharmacological inhibitors attenuated the HG induced in retinal cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.