Abstract

Neuroinflammation in the central nervous system is triggered by toxic stimuli or degenerative events, orchestrates the interplay of brain-intrinsic immune cells and neighboring neural cells, and sequentially allows leukocyte extravasation from the periphery into the brain parenchyma. During the inflammatory cascade, immune-competent cells become activated and secrete a plethora of cytokines and chemokines which form a local inflammatory signaling network important for warding off harmful stimuli to the host but are likewise necessary to preserve damaged brain tissue. Inflammatory responses are initiated by extra- and intra-cellular pathogen and danger-associated receptors. These signals are processed by multi-protein complexes termed inflammasomes which trigger the production of biologically active interleukins-1 and 18 after the cleavage of caspase-1. Estrogens and progesterone are neuroprotective and anti-inflammatory in diverse disease models of the brain in particular under acute inflammatory conditions such as stroke and traumatic brain injury. Both steroids are able to attenuate pro-inflammatory cytokine activity. Recent literature and our own studies provide convincing evidence that the anti-inflammatory potency of these steroids result from a complex interaction with the inflammasome activation and their up-stream regulatory network of miRNAs in brain-intrinsic innate immune cells. This article examines steroid–inflammasome interactions in the brain during brain injury and illuminates the importance of regulation initial upstream events during neuroinflammation.This article is part of a Special Issue entitled ‘Steroid Perspectives’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.