Abstract
Inflammation plays a crucial role in neurodegenerative diseases, but the irritants responsible for this response remain largely unknown. This report addressed the hypothesis that hypochlorous acid reacts with dopamine to produce melanic precipitates that promote cerebral inflammation. Spectrophotometric studies demonstrated that nM amounts of HOCl and dopamine react within seconds. A second-order rate constant for the reaction of HOCl and dopamine of 2.5 × 104M−1s−1 was obtained by measuring loss of dopaminergic fluorescence due to HOCl. Gravimetric measurements, electron microscopy, elemental analysis, and a novel use of flow cytometry confirmed that the major product of this reaction is a precipitate with an average diameter of 1.5μm. Flow cytometry was also used to demonstrate the preferential reaction of HOCl with dopamine rather than albumin. Engulfment of the chlorodopamine particulates by phagocytes in vitro caused these cells to release TNFα and die. Intrastriatal administration of 106 particles also increased the content of TNFα in the brain and led to a 50% loss of the dopaminergic neurons in the nigra. These studies indicate that HOCl and dopamine react quickly and preferentially with each other to produce particles that promote inflammation and neuronal death in the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.