Abstract
This article is concerned with Galois theory for iterative differential fields (ID-fields) in positive characteristic. More precisely, we consider purely inseparable Picard–Vessiot extensions, because these are the ones having an infinitesimal group scheme as iterative differential Galois group. In this article we prove a necessary and sufficient condition to decide whether an infinitesimal group scheme occurs as Galois group scheme of a Picard–Vessiot extension over a given ID-field or not. In particular, this solves the inverse ID-Galois problem for infinitesimal group schemes. Furthermore, this gives a tool to tell whether all purely inseparable ID-extensions are in fact Picard–Vessiot extensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.