Abstract
The underlying structure is taken as a strongly superharmonic cone [unk], defined as a partially ordered abelian semigroup with identity 0 which admits a multiplication by nonnegative scalars and satisfies two fundamental axioms of a potentialtheoretic character. In terms of a fixed nonzero element e there is introduced on [unk] a one-parameter family of nonlinear operators S(lambda) (lambda >/= 0) closely connected with the abstract theory of quasibounded and singular elements. The semigroup {S(lambda)} admits an infinitesimal generator A, and the elements invariant under A, called quasi-units, generalize the Yosida quasi-units in the theory of Riesz spaces. Quasi-units in [unk] are studied, both from a potentialtheoretic and a function-alanalytic viewpoint, culminating in a spectral representation theorem for quasi-bounded elements which extends the classical Freudenthal spectral theorem of Riesz space theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.