Abstract
In order to calculate the multiplicity of an isolated rational curve C on a local complete intersection variety X, i.e. the length of the local ring of the Hilbert Scheme of X at [C], it is important to study infinitesimal neighborhoods of the curve in X. This is equivalent to infinitesimal extensions of ℙ1 by locally free sheaves. In this paper we study infinitesimal extensions of ℙ1, determine their structure and obtain upper and lower bounds for the length of the local rings of their Hilbert schemes at [ℙ1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.