Abstract

Abstract In this paper, we consider the following Schrödinger–Poisson system with perturbation: { - Δ ⁢ u + u + λ ⁢ ϕ ⁢ ( x ) ⁢ u = | u | p - 2 ⁢ u + g ⁢ ( x ) , x ∈ ℝ 3 , - Δ ⁢ ϕ = u 2 , x ∈ ℝ 3 , \left\{\begin{aligned} \displaystyle-\Delta u+u+\lambda\phi(x)u&\displaystyle=% |u|^{p-2}u+g(x),&&\displaystyle x\in\mathbb{R}^{3},\\ \displaystyle-\Delta\phi&\displaystyle=u^{2},&&\displaystyle x\in\mathbb{R}^{3% },\end{aligned}\right. where λ > 0 {\lambda>0} , p ∈ ( 3 , 6 ) {p\in(3,6)} and the radial general perturbation term g ⁢ ( x ) ∈ L p p - 1 ⁢ ( ℝ 3 ) {g(x)\in L^{\frac{p}{p-1}}(\mathbb{R}^{3})} . By establishing a new abstract perturbation theorem based on the Bolle’s method, we prove the existence of infinitely many radial solutions of the above system. Moreover, we give the asymptotic behaviors of these solutions as λ → 0 {\lambda\to 0} . Our results partially solve the open problem addressed in [Y. Jiang, Z. Wang and H.-S. Zhou, Multiple solutions for a nonhomogeneous Schrödinger–Maxwell system in ℝ 3 \mathbb{R}^{3} , Nonlinear Anal. 83 2013, 50–57] on the existence of infinitely many solutions of the Schrödinger–Poisson system for p ∈ ( 2 , 4 ] {p\in(2,4]} and a general perturbation term g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.