Abstract

In this work, we study the existence of infinitely many solutions to the following quasilinear Schrödinger equations with a parameter α and a concave-convex nonlinearity: 0.1−Δpu+V(x)|u|p−2u−Δp(|u|2α)|u|2α−2u=λh1(x)|u|m−2u+h2(x)|u|q−2u,x∈RN,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $$\\begin{aligned}& -\\Delta _{p}u+V(x) \\vert u \\vert ^{p-2}u-\\Delta _{p}\\bigl( \\vert u \\vert ^{2\\alpha}\\bigr) \\vert u \\vert ^{2\\alpha -2}u= \\lambda h_{1}(x) \\vert u \\vert ^{m-2}u+h_{2}(x) \\vert u \\vert ^{q-2}u, \\\\& \\quad x\\in {\\mathbb{R}}^{N}, \\end{aligned}$$ \\end{document} where Δpu=div(|∇u|p−2∇u)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Delta _{p}u=\\operatorname{div}(|\ abla u|^{p-2}\ abla u)$\\end{document}, 1<p<N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$1< p< N$\\end{document}, λ≥0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\lambda \\ge 0$\\end{document}, and 1<m<p<2αp<q<2αp∗=2αpNN−p\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$1< m< p<2\\alpha p<q<2\\alpha p^{*}=\\frac{2\\alpha pN}{N-p}$\\end{document}. The functions V(x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$V(x)$\\end{document}, h1(x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$h_{1}(x)$\\end{document}, and h2(x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$h_{2}(x)$\\end{document} satisfy some suitable conditions. Using variational methods and some special techniques, we prove that there exists λ0>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\lambda _{0}>0$\\end{document} such that Eq. (0.1) admits infinitely many high energy solutions in W1,p(RN)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$W^{1,p}({\\mathbb{R}}^{N})$\\end{document} provided that λ∈[0,λ0]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\lambda \\in [0,\\lambda _{0}]$\\end{document}.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call