Abstract

This paper is concerned with the following Kirchhoff-type equations: $$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle -\big (a+b\int _{\mathbb {R}^{3}}|\nabla u|^{2}\mathrm {d}x\big )\Delta u+ V(x)u+\mu \phi |u|^{p-2}u=f(x, u)+g(x,u), &{} \text{ in } \mathbb {R}^{3},\\ (-\Delta )^{\frac{\alpha }{2}} \phi = \mu |u|^{p}, &{} \text{ in } \mathbb {R}^{3},\\ \end{array} \right. \end{aligned}$$ where $$a>0,~b,~\mu \ge 0$$ are constants, $$\alpha \in (0,3)$$ , $$p\in [2,3+2\alpha )$$ , the potential V(x) may be unbounded from below and $$\phi |u|^{p-2}u$$ is a Hartree-type nonlinearity. Under some mild conditions on V(x), f(x, u) and g(x, u), we prove that the above system has infinitely many nontrivial solutions. Specially, our results cover the general Schrodinger equations, the Kirchhoff equations and the Schrodinger–Poisson system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.