Abstract

In this paper we study the existence of multiple sign-changing solutions for the following nonlocal Kirchhoff-type boundary value problem: $$\begin{aligned} \left\{ \begin{array}{ll} -\left( a+b\int _{\Omega }|\nabla u|^2{ dx}\right) \triangle {u}=\lambda |u|^{p-1}u,&{}\quad \text{ in }\quad \Omega ,\\ u=0,&{} \quad \text{ on }\quad \partial \Omega . \\ \end{array}\right. \end{aligned}$$ Using a new method, we prove that this problem has infinitely many sign-changing solutions and has a least energy sign-changing solution for $$p\in (3,5)$$ . Few existence results of multiple sign-changing solutions are available in the literature. This new method is that, by choosing some suitable subsets which separate the action functional and on which the functional is bounded, so that we can use genus and the method of invariant sets of descending flow to construct the minimax values of the functional. Our work generalize some results in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.