Abstract

Abstract We deal with localized semiclassical states for singularly perturbed Kirchhoff-type equation as follows: − ε 2 a + ε b ∫ R 3 ∣ ∇ v ∣ 2 d x Δ v + V ( x ) v = P ( x ) f ( v ) , x ∈ R 3 , -\left({\varepsilon }^{2}a+\varepsilon b\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla v{| }^{2}{\rm{d}}x\right)\Delta v+V\left(x)v=P\left(x)f\left(v),\hspace{1em}x\in {{\mathbb{R}}}^{3}, where V , P ∈ C 1 ( R 3 , R ) V,P\in {C}^{1}\left({{\mathbb{R}}}^{3},{\mathbb{R}}) and bounded away from zero. By applying the penalization approach together with the Nehari manifold approach in the studies of Szulkin and Weth, we obtain the existence of an infinite sequence of localized solutions of higher topological type. In addition, we also give a concrete set as the concentration position of these localized solutions. It is noted that, in our main results, f f only belongs to C ( R , R ) C\left({\mathbb{R}},{\mathbb{R}}) and does not satisfy the Ambrosetti-Rabinowitz-type condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.