Abstract

Results of Jain and Khan (1979) and Khan and Jain (1978) on the time to first emptiness of a reservoir are generalized to include the case of defective random variables where the mass at ∞ can be positive. The assumption of an underlying exponential family is not needed — the general condition is infinite divisibility and closure under convolutions. The support of the distributions can be nonnegative reals or nonnegative integers. Examples are given to illustrate the general theory and show the bivariate extension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.