Abstract

This paper presents modelling of a squirrel-cage induction motor and an optimal control method based on suboptimal control for nonlinear systems to minimise consumed energy and power losses in an induction motor drive. A coupled motor model with optimal control as a closed-loop integrated system is proposed. For modelling of the squirrel-cage asynchronous machine, a field-circuit-mechanical finite-element (FE) model is employed, in which mechanical motion is realised by a moving-mesh method and fixed mesh approach. For the control problem purpose, a surrogate induction motor model, described in a stationary rotor reference d–q frame, is applied. The optimal control is realised by a nonlinear feedback compensator method based on the state-dependent Riccati equation (SDRE) with an infinite time horizon with the surrogate model state-dependent parametrisation (SDP). To perform the control strategy, a SDRE technique with Moore–Penrose pseudoinverse is adopted. To improve the accuracy of the optimisation procedure, a finite element model was used to calculate the motor performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.