Abstract
AbstractWe study the positivity and regularity of solutions to the fractional porous medium equations in for m > 1 and s ∈ (0,1), with Dirichlet boundary data u = 0 in and nonnegative initial condition .Our first result is a quantitative lower bound for solutions that holds for all positive times t > 0. As a consequence, we find a global Harnack principle stating that for any t > 0 solutions are comparable to ds/m, where d is the distance to ∂Ω. This is in sharp contrast with the local case s = 1, where the equation has finite speed of propagation.After this, we study the regularity of solutions. We prove that solutions are classical in the interior (C∞ in x and C1,α in t) and establish a sharp regularity estimate up to the boundary.Our methods are quite general and can be applied to wider classes of nonlocal parabolic equations of the form in Ω, both in bounded and unbounded domains.© 2016 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.