Abstract

We study the precise asymptotic behavior of a non-trivial solution that converges to zero, as time tends to infinity, of dissipative systems of nonlinear ordinary differential equations. The nonlinear term of the equations may not possess a Taylor series expansion about the origin. This absence technically cripples previous proofs in establishing an asymptotic expansion, as an infinite series, for such a decaying solution. In the current paper, we overcome this limitation and obtain an infinite series asymptotic expansion, as time goes to infinity. This series expansion provides large time approximations for the solution with the errors decaying exponentially at any given rates. The main idea is to shift the center of the Taylor expansions for the nonlinear term to a non-zero point. Such a point turns out to come from the non-trivial asymptotic behavior of the solution, which we prove by a new and simple method. Our result applies to different classes of non-linear equations that have not been dealt with previously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.