Abstract
We define and study infinite root stacks of fine and saturated logarithmic schemes, a limit version of the root stacks introduced by Niels Borne and the second author. We show in particular that the infinite root stack determines the logarithmic structure, and recovers the Kummer-flat topos of the logarithmic scheme. We also extend the correspondence between parabolic sheaves and quasi-coherent sheaves on root stacks to this new setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.