Abstract

We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe a relation to the so-called uniform infinite tree and results on the Hausdorff and spectral dimension of two-dimensional space-time obtained in B. Durhuus, T. Jonsson, J.F. Wheater, J. Stat. Phys. 139, 859 (2010) are briefly outlined. For the latter we discuss results on the absence of spontaneous magnetization and argue that, in the generic case, the values of the Hausdorff and spectral dimension of the underlying infinite trees are not influenced by the coupling to an Ising model in a constant magnetic field (B. Durhuus, G.M. Napolitano, in preparation) (Less)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.