Abstract

One versatile route to the creation of two-dimensional crystal structures on the nanometer to micrometer scale is the self-assembly of colloidal particles at an interface. Here, we explore the crystal phases that can be expected from the self-assembly of mixtures of spherical particles of two different sizes, which we map to (additive or non-additive) hard-disk mixtures. We map out the infinite-pressure phase diagram for these mixtures using Floppy Box Monte Carlo simulations to systematically sample candidate crystal structures with up to 12 disks in the unit cell. As a function of the size ratio and the number ratio of the two species of particles, we find a rich variety of periodic crystal structures. Additionally, we identify random tiling regions to predict random tiling quasicrystal stability ranges. Increasing non-additivity both gives rise to additional crystal phases and broadens the stability regime for crystal structures involving a large number of large-small contacts, including random tilings. Our results provide useful guidelines for controlling the self-assembly of colloidal particles at interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.