Abstract

AbstractA graph is k‐indivisible, where k is a positive integer, if the deletion of any finite set of vertices results in at most k – 1 infinite components. In 1971, Nash‐Williams conjectured that a 4‐connected infinite planar graph contains a spanning 2‐way infinite path if and only if it is 3‐indivisible. In this paper, we prove a structural result for 2‐indivisible infinite planar graphs. This structural result is then used to prove Nash‐Williams conjecture for all 4‐connected 2‐indivisible infinite planar graphs. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 247–266, 2005

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.