Abstract

In this paper, a novel iterative adaptive dynamic programming (ADP)-based infinite horizon self-learning optimal control algorithm, called generalized policy iteration algorithm, is developed for nonaffine discrete-time (DT) nonlinear systems. Generalized policy iteration algorithm is a general idea of interacting policy and value iteration algorithms of ADP. The developed generalized policy iteration algorithm permits an arbitrary positive semidefinite function to initialize the algorithm, where two iteration indices are used for policy improvement and policy evaluation, respectively. It is the first time that the convergence, admissibility, and optimality properties of the generalized policy iteration algorithm for DT nonlinear systems are analyzed. Neural networks are used to implement the developed algorithm. Finally, numerical examples are presented to illustrate the performance of the developed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.