Abstract

<p>We introduce new infinite games, played in a quasi-uniform space, that generalise the proximal game to the framework of quasi-uniform spaces. We then introduce bi-proximal spaces, a concept that generalises proximal spaces to the quasi-uniform setting. We show that every bi-proximal space is a W-space and as consequence of this, the bi-proximal property is preserved under Σ-products and closed subsets. It is known that the Sorgenfrey line is almost proximal but not proximal. However, in this paper we show that the Sorgenfrey line is bi-proximal, which shows that our concept of bi-proximal spaces is more general than that of proximal spaces. We then present separation properties of certain bi-proximal spaces and apply them to quasi-uniform box products.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.