Abstract

We recapitulate results from the infinite ergodic theory that are relevant to the theory of non-extensive entropies. In particular, we recall that the Lyapunov exponent of the corresponding systems is zero and that the deviation between neighboring trajectories does not necessarily grow polynomially. Nonetheless, as we show, no single quantity can describe this subexponential growth, the generalized q-exponential exp q being, in particular, ruled out. We also revisit a number of dynamical systems preserving nonfinite ergodic measure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.