Abstract

We develop the concept of an infinite-energy statistical solution to the Navier–Stokes and Euler equations in the whole plane. We use a velocity formulation with enough generality to encompass initial velocities having bounded vorticity, which includes the important special case of vortex patch initial data. Our approach is to use well-studied properties of statistical solutions in a ball of radius R to construct, in the limit as R goes to infinity, an infinite-energy solution to the Navier–Stokes equations. We then construct an infinite-energy statistical solution to the Euler equations by making a vanishing viscosity argument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.