Abstract
We derive finite difference equations of infinite order for theta-hypergeometric series and investigate the space of their solutions. In general, such infinite series diverge, and we describe some constraints on the parameters when they do converge. In particular, we lift the Hardy-Littlewood criterion of the convergence of $q$-hypergeometric series for ${|q|=1}$, $q^n\neq 1$, to the elliptic level and prove the convergence of infinite very-well poised elliptic hypergeometric $ _{r+1}V_r$-series for restricted values of $q$. Bibliography: 13 titles.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.