Abstract
This book presents the salient features of the general theory of infinite electrical networks in a coherent exposition. Using the basic tools of functional analysis and graph theory, the author examines the fundamental developments in the field and discusses applications to other areas of mathematics. The first half of the book presents existence and uniqueness theorems for both infinite-power and finite-power voltage-current regimes, and the second half discusses methods for solving problems in infinite cascades and grids. A notable feature is the invention of transfinite networks, roughly analogous to Cantor's extension of the natural numbers to the transfinite ordinals. The last chapter is a survey of application to exterior problems of partial differential equations, random walks on infinite graphs, and networks of operators on Hilbert spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.