Abstract

We show that an interaction decaying as a stretched exponential function of distance, , is able to alter the universality class of short-range systems having an infinite-disorder critical point. To do so, we study the low-energy properties of the random transverse-field Ising chain with the above form of interaction by a strong-disorder renormalization group (SDRG) approach. We find that the critical behavior of the model is controlled by infinite-disorder fixed points different from those of the short-range model if 0 < a < 1/2. In this range, the critical exponents calculated analytically by a simplified SDRG scheme are found to vary with a, while, for a > 1/2, the model belongs to the same universality class as its short-range variant. The entanglement entropy of a block of size L increases logarithmically with L at the critical point but, unlike the short-range model, the prefactor is dependent on disorder in the range 0 < a < 1/2. Numerical results obtained by an improved SDRG scheme are found to be in agreement with the analytical predictions. The same fixed points are expected to describe the critical behavior of, among others, the random contact process with stretched exponentially decaying activation rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.