Abstract

We consider the problem of approximating a smooth function from finitely many pointwise samples using \(\ell ^1\) minimization techniques. In the first part of this paper, we introduce an infinite-dimensional approach to this problem. Three advantages of this approach are as follows. First, it provides interpolatory approximations in the absence of noise. Second, it does not require a priori bounds on the expansion tail in order to be implemented. In particular, the truncation strategy we introduce as part of this framework is independent of the function being approximated, provided the function has sufficient regularity. Third, it allows one to explain the key role weights play in the minimization, namely, that of regularizing the problem and removing aliasing phenomena. In the second part of this paper, we present a worst-case error analysis for this approach. We provide a general recipe for analyzing this technique for arbitrary deterministic sets of points. Finally, we use this tool to show that weighted \(\ell ^1\) minimization with Jacobi polynomials leads to an optimal method for approximating smooth, one-dimensional functions from scattered data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.