Abstract

Expanding a result of Serre on finite CW-complexes, we show that the Brauer group coincides with the cohomological Brauer group for arbitrary compact spaces. Using results from the homotopy theory of classifying spaces for Lie groups, we give another proof of the result of Antieau and Williams that equality does not hold for Eilenberg-MacLane spaces of type K(ℤ/nℤ, 2). Employing a result of Dwyer and Zabrodsky, we show the same for the classifying spaces BG where G is an infinite-dimensional F p -vector space. In this context, we also give a formula expressing phantom cohomology in terms of homology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.