Abstract

We study dependent bond percolation on the homogeneous tree $T_n$ of order $n \geq 2$ under the assumption of automorphism invariance. Excluding a trivial case, we find that the number of infinite clusters a.s. is either 0 or $\infty$. Furthermore, each infinite cluster a.s. has either 1, 2 or infinitely many topological ends, and infinite clusters with infinitely many topological ends have a.s. a branching number greater than 1. We also show that if the marginal probability that a single edge is open is at least $2/(n + 1)$, then the existence of infinite clusters has to have positive probability. Several concrete examples are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.