Abstract

In the boundary element (BE) solution of wave propagation, infinite absorbing elements are introduced to minimize diffractions from truncated edges of models. This leads to a significant simplification and reduction of computational effort, especially for 3-D problems. The infinite BE absorbing boundary condition has a general form for both 2-D and 3-D problems and for both acoustic and elastic cases. Its implementation is facilitated by the introduction of the corresponding shape functions. Numerical experiments illustrate a nearly perfect absorption of unwanted diffractions. The approach overcomes some of the difficulties encountered in conventional absorbing techniques and takes less memory space and less computing time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.