Abstract
AbstractThe present paper deals with a purely syntactic analysis of infinitary logic with infinite sequents. In particular, we discuss sequent calculi for classical and intuitionistic infinitary logic with good structural properties based on sequents possibly containing infinitely many formulas. A cut admissibility proof is proposed which employs a new strategy and a new inductive parameter. We conclude the paper by discussing related issues and possible themes for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.