Abstract
We present a unified categorical treatment of completeness theorems for several classical and intuitionistic infinitary logics with a proposed axiomatization. This provides new completeness theorems and subsumes previous ones by Gödel, Kripke, Beth, Karp and Joyal. As an application we prove, using large cardinals assumptions, the disjunction and existence properties for infinitary intuitionistic first-order logics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.