Abstract
We define infinitary Combinatory Reduction Systems (iCRSs), thus providing the first notion of infinitary higher-order rewriting. The systems defined are sufficiently general that ordinary infinitary term rewriting and infinitary λ -calculus are special cases. Furthermore, we generalise a number of known results from first-order infinitary rewriting and infinitary λ -calculus to iCRSs. In particular, for fully-extended, left-linear iCRSs we prove the well-known compression property, and for orthogonal iCRSs we prove that (1) if a set of redexes U has a complete development, then all complete developments of U end in the same term and that (2) any tiling diagram involving strongly convergent reductions S and T can be completed iff at least one of S / T and T / S is strongly convergent. We also prove an ancillary result of independent interest: a set of redexes in an orthogonal iCRS has a complete development iff the set has the so-called finite jumps property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.